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A B S T R A C T

As cemented paste backfill (CPB) plays an increasingly important role in minerals engineering, forecasting its
mechanical properties becomes a necessity for efficient CPB design. Machine learning (ML) techniques have
previously demonstrated remarkable successes in such task by providing black-box predictions. To express the
non-linear relationship in an explicit and precise way, we employed genetic programming (GP) for the uniaxial
compressive strength (UCS) prediction of CPB. The influence of sampling method, training set size and maximum
tree depth on the GP performance was investigated. A detailed analysis was conducted on a representative GP
model and the relative variable importance was investigated using the relative variable frequency, partial de-
pendence plots and relative importance scores. The statistical parameters show that a satisfactory performance
was obtained by the GP modelling (R2 >0.80 on the testing set). Results of this study indicate that cement-tail-
ings ratio, solids content and curing time were the most three important variables for the UCS prediction. The
predictive performance of GP modelling was comparable to well-recognised ML techniques, and the trained GP
model can be generalised to entirely new tailings with satisfactory performance. This study indicates that the
GP-based method is capable of providing explicit and precise forecasting of UCS, which can serve as a reliable
tool for quick, inexpensive and effective assessment of UCS in the absence of adequate experimental data.

Nomenclature

CPB cemented paste backfill
CTR cement-tailings ratio
DT decision tree
ET expression tree
GBM gradient boosting machine
GP genetic programming
GP_5, GP_10 and GP_15 GP models with a 5, 10 and 15 maxi-

mum tree depth
IA Willmott’s index of agreement
IRS iterative random sampling
KS Kennard-Stone sampling
ML machine learning
N_mean normalised mean value

(N)SIV (Non-)significant input variables in Eq. (7)
PSD particle size distribution
RF random forest
RGP_5 representative GP_5 model
RMSE root-mean-square error
SC solids content
SD and N_SD standard deviation and Normalised SD
T curing time
UCS uniaxial compressive strength
XRD X-ray diffraction
Cu and Cc coefficient of uniformity and curvature
Cv coefficient of variance
Gs specific gravity
k slope of regression lines
R correlation coefficient
R2 coefficient of determination
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Fig. 1. Traditional and genetic programming methods in UCS analysis.

Fig. 2. Distribution of mine sites in China for tailings collection.

xi′ and yi′ input and output values for the ith sample
xi and yi normalised xi′ and yi′

, , , and minimum and maximum values

1. Introduction

Cemented paste backfill (CPB) is gaining attention in both academia
and industry because of its potential as an environmental way of tail

Fig. 3. A sample ET of GP.

ings management (Yilmaz and Fall, 2017). In addition, it can stabilise
rock mass and provide ground support for subsequent mining opera-
tions (Liu et al., 2019; Qi et al., 2018a). Another interesting feature of
using CPB is to increase the ore recovery rate by reducing ore pillars.
Created by mixing dewatered tailings, binders and water, CPB has been
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Fig. 4. Illustration of crossover and mutation procedures.

Table 1
GP parameters for UCS modelling.

GP parameters Parameter values

Initial parameters Population size 500
Maximum number of generations 1000
Initialization method Half
Fitness function R2

Selection method Tournament
Maximum tree depth 5, 10, 15
Stopping criteria Maximum generation

Genetic operators Crossover probability 90%
Mutation probability 15%

increasingly employed worldwide since its introduction (Chen et al.,
2018; Cihangir et al., 2015; Kesimal et al., 2003; Liu et al., 2018; Lu et
al., 2018; Mangane et al., 2018; Qi et al., 2019; Qi et al., 2018c; Yilmaz
et al., 2009).

In spite of the importance of CPB and its exciting advantages, a
throughout understanding of its mechanical properties is still lacking.
This research gap is especially evident when all chemical and physi-
cal variables of CPB mechanical properties are considered, such as the
mineralogy and type of the processing tailings. For example, the uniax-
ial compressive strength (UCS) is one of the most important mechani-
cal properties of CPB, which plays a crucial role in its engineering de-
signs and successful applications. However, cumbersome and costly ex-
periments are required for each type of tailings and the CPB process
parameters (i.e. cement-tailings ratio) are often determined by inspec-
tion (see Fig. 1a). A large number of experimental data has been gen-
erated for various tailings worldwide, which remains unexploited, at

least in most cases, due to the absence of appropriate techniques to
manipulate extensive data, analyse high-dimensional inputs and possess
good generalisation capability.

Recent progress in machine learning (ML) suggests that it is possi-
ble to construct an ML model that can learn the relationship between
CPB mechanical properties and their influencing variables (Orejarena
and Fall, 2010a; Orejarena and Fall, 2010b; Qi et al., 2018b; Qi et al.,
2018d). Our previous study has shown that it is promising to predict
the UCS, yield strength, Young’s modulus and uniaxial tensile strength
from physical and chemical properties of tailings, cement-tailings ra-
tio, solids content, and curing time (Qi et al., 2018a). Though these ML
techniques learn the relationship from a large amount of experimental
data and generalise past experience to new situations with satisfactory
performance, none of them put forward an explicit formulation. Conse-
quently, these approaches are too complex to be interpreted, especially
for practitioners with little or no ML knowledge. Software development
can solve this problem to some extent but is still restricted by its en-
gineering availability due to license considerations. Therefore a great
need arises for developing forecasting methods with both acceptable ac-
curacy and explicit nature to fulfil this requirement.

Genetic programming (GP) has emerged as an explicit and precise
modelling technique, which is still a missing component in CPB design.
It expresses the non-linear relationship as an expression tree (ET) and
is regarded as the developed version of genetic algorithms (Khandelwal
et al., 2017b). Utilization of GP in the field of minerals engineering has
been limited to a few studies in the recent years. Ross et al. (2005)
used GP to evolve mineral identification functions for hyperspectral
images and found that the GP-evolved mineral classifiers are encour-
aging in identifying the existence or absence of particular minerals.
Nazari (2012) employed GP to forecast the water absorption percent-
age of geopolymers created by mixing fly ash and rice husk-bark ash.
Hoseinian et al. (2017) developed a GP-based method to predict the
power of the semi-autogenous mill for minerals grinding.

The objective of this study is to apply GP modelling to forecast the
UCS of CPB samples (Fig. 1b), which will contribute to current value
in the following ways: (i) An enlarged dataset was collected using 1545
UCS tests performed on 11 types of tailings; (ii) A comprehensive sen-
sitivity study was performed for sampling method, training set size and
maximum tree depth; (iii) Results of the GP modelling were analysed in
detail and compared to the results from well-recognised ML techniques;
(iv) The generalisation capability of the trained GP model to entirely
new tailings was investigated. The authors believe CPB property predic-
tion is of vital significance for establishing the ‘Intelligent Mining for
Backfill (IMB)’ system, in which artificial intelligence (AI) techniques
are used in CPB design to promote its application. The developed model
can serve as a reliable tool for quick, inexpensive and effective assess-
ment of UCS in the absence of adequate experimental data, and can
work as a benchmark study for future application of GP in minerals en-
gineering.

2. Specification of the study

2.1. Dataset preparation

A dataset with accurate experimental values and wide distribution
is a prerequisite for the successful application of the GP modelling. In
this paper, extensive UCS experiments were performed on 11 types of
tailings. The distribution of mine sites is shown in Fig. 2 and the experi-
mental design for each type of tailings is presented in Table S1 (supple-
mentary material). The authors note that different experimental designs
were used for various tailings, which were determined by inspection and
engineering requirements.

No. 325 Portland cement and tap water were used as the binder
agent and the mixing water, respectively. The CPB materials, including
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Table 2
Descriptive statistics of inputs and output.

Variables No. Min Max Mean SD Skewness Cv N_mean N_SD

Gs x1 2.08 3.27 2.84 0.29 −0.66 0.10 0.64 0.24
D10 x2 0.00 0.25 0.03 0.06 2.75 1.97 0.12 0.26
D50 x3 0.01 1.44 0.18 0.35 3.11 1.90 0.12 0.25
Cu x4 4.65 30.74 16.59 10.01 0.29 0.60 0.46 0.38
Cc x5 0.87 2.04 1.08 0.27 2.04 0.25 0.18 0.23
SiO2 x6 29.11 72.50 46.07 14.32 0.67 0.31 0.39 0.33
CaO x7 0.37 32.65 15.09 11.40 0.11 0.76 0.46 0.35
Al2O3 x8 0.37 25.04 8.32 6.50 1.18 0.78 0.32 0.26
MgO x9 0.13 13.02 3.44 3.73 1.67 1.09 0.26 0.29
Fe2O3 x10 0.49 10.67 5.49 3.83 0.29 0.70 0.49 0.38
CTR x11 0.05 0.33 0.15 0.07 0.90 0.49 0.36 0.26
SC x12 59.00 81.00 72.96 5.12 −0.91 0.07 0.63 0.23
T x13 3.00 60.00 17.86 16.14 1.22 0.90 0.26 0.28
UCS y 0.01 10.94 1.09 1.41 2.95 1.30 0.10 0.13

Fig. 5. Correlation coefficient plot of input variables. Serial number 1–13 corresponds to
x1-x13 in Table 2.

mine tailings, binder agent and mixing water, were homogeneously
mixed using a concrete mixer (JJ-5, Hongda, Hebei). The mixed CPB
materials were poured into bottom-drained plastic moulds (50mm di-
ameter and 100mm height) and then placed in a curing box (YH-40B,
Qingdao, Tianjin) at 25 ℃ and 90% humidity. Three replicates were
conducted for each experimental scheme, leading to a total of 1545 CPB
specimens. The authors note that ‘specimen’ was used to represent CPB
specimens prepared for UCS tests while ‘sample’ was used to represent
a pair of inputs and output in the dataset for GP modelling.

Based on the literature review, the main influencing variables were
selected to be tailings type, cement-tailings ratio (CTR), solids content
(SC) and curing time (T). As the tailings type is a nominal variable,
namely a discrete data type with 11 categories, it was represented by
its physical and chemical properties. The particle size distribution (PSD)
was determined using a Malvern Mastersizer 2000 laser analyser and
the X-ray diffraction (XRD) was measured using a Bruker SIMENS D500.
The qualification of mineralogical compositions from XRD results was
performed using the Rietveld method. The physical and chemical prop-
erties of tailings are provided in Table S2. An SHT-4206 SANS test-
ing machine was used to perform UCS tests following the procedures
in ASTM C39 (ASTM, 2001). Detailed description about the experimen-
tal procedure can be as easily found in our previous papers (Qi et al.,
2018a).

Fig. 6. Comparison of IRS and KS in a two-dimensional dataset.
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Fig. 7. The influence of IRS and KS on GP modelling performance.

2.2. Genetic programming

GP is one of the most popular data-driven algorithms that can be
used to find the relationship between inputs and outputs automatically.
It is proposed and modified by Cramer and Koza (Cramer, 1985; Koza,
1994) based on the inspiration of biological evolution and natural selec-
tion. In GP, each potential solution to the problem is represented by an
ET consisting of branches and leaves. Fig. 3 depicts a sample ET with a
simple mathematical equation: y=4x+x, where y represents the out-
put and x represents inputs. As shown in Fig. 3, the branches in an ET
are represented by different functions, including arithmetic functions
(i.e. +, −, and *), trigonometric functions (i.e. sin and cos), exponential
and logarithmic functions and special functions (i.e. integral). In con-
trast, terminals are used to represent leaves and the most widely used
terminals are input variables and constant. Prior to the GP modelling,
functions and terminals need to be pre-determined by the designer for
each specific type of problem.

The GP modelling starts from an initial population generated ran-
domly by grow, half (ramped-half-and-half) or full method (Koza,
1994). Then, the fitness of each ET is determined based on the de-
signed fitness measure (i.e. coefficient of determination R2). Mimicking
Darwinian evolution, the ETs with the best performances are selected

and used for the creation of the following generations (offspring).
Crossover and mutation are two methods for the offspring generation
using the ETs from the last generation (shown in Fig. 4). The genera-
tion-selection-generation process is iterated until the stopping criterion
(such as the maximum number of generation) is reached.

The preceding introduction about the GP procedure suggests that
there are several parameters for the GP modelling, including: (i) a func-
tion set and a terminal set; (ii) a fitness measure; (iii) GP parameters
for the generation and evolution of ETs. In this paper, the arithmetic,
trigonometric, exponential and logarithmic functions were included in
the function set and the input variables and the constant were included
in the terminal set. The remaining GP parameters are provided in Table
1, which were determined by trial tests and recommendations in the lit-
erature (Assimi et al., 2017; Khandelwal et al., 2017a).

2.3. Modelling procedure

As discussed in Section 2.1, 1545 UCS tests were conducted for the
dataset preparation, leading to a total of 515 samples in the dataset.
For each sample, the inputs included five variables for tailings physical
properties (specific gravity and PSD), five variables for tailings chemical
properties, CTR, SC and T while the output was the UCS value. Thus,
there were 13 input variables and one output variable for each sam-
ple. The statistical description of the dataset is illustrated in Table 2. As
shown, there was an evident difference in the data distribution, such as
the data scope, for each variable. Towards this end, all inputs and out-
put were normalised to (0, 1) based on their maximum and minimum
values as follows:

(1)

(2)

where xi and yi represent normalised input and output values; xi′ and yi′

represent experimental input and output values; , , ,
represent their corresponding minimum and maximum values.

Fig. 5 shows the correlation coefficient (R) between input variables.
As shown, most R values were less than 0.5, indicating there was a
relatively weak correlation between most input variables (Koo and Li,
2016). A strong correlation was observed among x1-x3, such as the R
values between x1 and x2 (denoted as Rx1-x2) and x1 and x3 (denoted as

Fig. 8. The influence of training set size and maximum tree depth on GP modelling performance.

5



UN
CO

RR
EC

TE
D

PR
OO

F

C. Qi et al. Minerals Engineering xxx (2019) xxx-xxx

Fig. 9. Expression tree structure of the developed GP model.

Rx1-x3) were both −0.74. This result is straightforward as the specific
gravity (Gs) of tailings is strongly correlated to the PSD of tailings. Fur-
thermore, R=−0.74 indicates that Gs was negatively correlated with
D10 and D50. The authors note that such a result could be an occasional
relationship according to the utilised dataset. A better understanding of
the relationship between Gs and PSD requires a comprehensive knowl-
edge of particle interaction and movement, which will be a future topic.
Strong correlations were also observed among several chemical proper-
ties, such as Rx6-x7 =−0.83 and Rx7-x9 =0.63. The x11, x12, and x13 exhib-
ited no strong correlations to any other input variables as their values
were determined primarily by inspection considers limited information
about tailings properties.

The entire dataset is divided into two subsets after the dataset nor-
malisation, in which one is used for GP training (the training set) and
the other is used for verification (the testing set). In this paper, two dif-
ferent dataset splitting methods were compared, namely the iterative
random sampling (IRS) and the Kennard-Stone (KS) sampling. The IRS
picks the data points randomly in the whole dataset and the dataset
splitting is performed for several times to reduce the randomness. In
contrast, the KS sampling is designed to select the data points evenly in
the space of interest (Kennard and Stone, 1969). A comparison between
IRS and KS in a two-dimensional dataset is shown in Fig. 6. In this pa-
per, the comparison between IRS and KS was performed with a training
set size of 70%.

A sensitivity study was conducted to investigate the influence of
training set size (40–80% with a 10% interval) and maximum tree depth
(5, 10 and 15) on the performance of GP modelling. A detailed perfor-
mance evaluation was then conducted on one representative GP model,
followed by a relative importance investigation of the input variables.
The authors note that all dataset splitting using the IRS was performed
ten times to reduce randomness. Similarly, all GP modelling using the
same training and testing sets was performed three times as there is also
randomness involved in GP modelling (i.e. initialisation and mutation).

2.4. Statistical assessment of the results

To evaluate the reliability of the trained GP models, the following
statistical descriptors were calculated between the predicted and exper-
imental UCS values.

• Coefficient of determination (R2): R2 measures how well the output
is predicted by the GP model using the proportion of total variation
of output explained by the GP model (Draper and Smith, 2014). R2 is
defined as:

(3)

where N is the number of samples, yi and yi∗ are the experimental and
predicted UCS value of the ith sample, and is the average UCS value
in the subset.

• Root-mean-square error (RMSE): RMSE is the standard deviation of
the error between experimental and predicted UCS values. It is often
used to find the unexpected large differences. RMSE is defined as:

(4)

• Slope of regression lines (k): k is calculated to be the slope of the
linear regression equation fitted between experimental and predicted
UCS values. A perfect prediction will produce a linear regression

Fig. 10. Comparison of experimental and predicted UCS values: (a) Training set and (b) Testing set.
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Fig. 11. Relative frequency of input variables with GP evolving generations.

with k=1 and intercept=0. The calculation expression for k is given
below:

(5)

• Willmott’s index of agreement (IA): IA is widely used to measure the
degree of model prediction error. The IA value is ranged between [0,
1], in which 1 indicates a perfect prediction and 0 indicates an inef-
fective prediction (no better than randomly guessing). IA is defined
as:

(6)

3. Application and results

3.1. Comparison of IRS and KS

Fig. 7 shows the influence of sampling method on the performance
of GP modelling. The authors note here the comparison was conducted
with a training set size of 70% as it is widely used in the literature (Qi et
al., 2018e). It is found that the KS method has a higher average R2 value
(0.96) on the training set compared to the IRS method (0.93). However,
the average R2 value on the testing set obtained by the KS method was
much lower than that obtained by the IRS method (0.83 compared to
0.91). Such a comparison indicates that the trained GP model with the
KS method was prone to overfitting compared with the IRS method. This
result agrees well with the findings in (Lee et al., 2018) and the reliabil-
ity of the KS method might suffer from different data distribution in the
training and testing sets. As indicated in (Golbraikh and Tropsha, 2002;
Roy and Roy, 2008), a prediction can be considered as satisfactory if
the R2 value between actual and predicted values is higher than 0.64
(R>0.8). Though the GP performance with the KS method was more
stable compared to the IRS method (the KS method produced a smaller
SD), the IRS method was employed in the following sections for its high
generalisation capability.

3.2. Influence of training set size and maximum tree depth

The results of the sensitivity study about the training set size and the
maximum tree depth are illustrated in Fig. 8. As shown, there was no ev-
ident performance improvement on the training set with an increase in
the training set size. The average R2 value on the training set was 0.95,
0.96, 0.96, 0.93 and 0.96, respectively, when the training set size was
increased from 40% to 80%. However, the performance of GP model-
ling on the testing set was gradually improved stabilised when the train-
ing set size was increased from 40% to 60%. Above 60%, there was no
clear trend along the increase of training set size. Therefore, 60% was
selected to be the training set size in the following discussion.

The maximum tree depth is one of the most crucial GP parameters
that control the complexity of each ET. In this paper, 5, 10 and 15

Fig. 12. Partial dependence plots of SIV from the RGP model.
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Table 3
Relative importance score and its SD calculated from GP and GBM modelling.

Variables GP GBM

Average SD Average SD

x1 0.005 0.0016 0.009 0.0021
x2 0.004 0.0003 0.020 0.0078
x3 0.004 0.0003 0.018 0.0051
x4 0.030 0.0394 0.016 0.0046
x5 0.036 0.0409 0.019 0.0038
x6 0.087 0.0552 0.015 0.0021
x7 0.012 0.0213 0.013 0.0013
x8 0.004 0.0000 0.015 0.0023
x9 0.054 0.0638 0.017 0.0016
x10 0.005 0.0022 0.018 0.0039
x11 0.330 0.0419 0.339 0.0147
x12 0.231 0.0710 0.261 0.0242
x13 0.200 0.0522 0.241 0.0215

Fig. 13. Performance comparison between GP modelling and ML algorithms.

were selected to be the maximum tree depth to investigate its influence
on the modelling performance. GP models with a 5, 10 and 15 max-
imum tree depth were referred to GP_5, GP_10 and GP_15 in this pa-
per. An evident performance improvement was observed when the max-
imum tree depth was increased from 5 to 10. To be more specific, the
average R2 value on the training set was increased from 0.86 to 0.96
and the average R2 value on the testing set was increased from 0.83 to

0.94. Moreover, the SD values on the training and testing sets were
0.022 and 0.040, respectively, in the case of maximum tree depth=5,
which was decreased to 0.011 and 0.013 when the maximum depth was
increased to 10. This result indicates the prediction became more stable
when the maximum tree depth was increased to 10.

When the maximum tree depth was further increased from 10 to 15,
a subtle increase (0.21%) was observed of the average R2 value on the
training set. In contrast, the average R2 value on the testing set began
to decline from 0.94 to 0.92. Further analysis shows that SD values de-
creased on the training set while increased on the testing set, implying
the GP model was more stable on the training set while less stable on
the testing set. Therefore, GP modelling became a little bit overfitting
when the maximum tree depth exceeded 10.

In general, the results from Sections 3.1 and 3.2 suggest the GP mod-
elling on the UCS dataset can achieve better performance with the IRS
method, a training set size of 60% and a maximum tree depth of 10.

3.3. Performance evaluation of GP modelling

Having discussed the influence of sampling method, training set size
and maximum tree depth on the performance of GP modelling, we now
turn our attention to the detailed performance evaluation of the devel-
oped GP models. To make the analysis more straightforward, we used a
GP_5 model with a training set size of 60% as an example. It should be
noted that 10 GP_5 models have been constructed with the IRS method
to reduce the randomness in Fig. 8. Here, we selected one representa-
tive GP_5 (RGP_5) model with a similar performance to the average val-
ues from 10 GP_5 models. The RGP_5 model had a 0.86 R2 value on the
training set and a 0.82 R2 value on the testing set, compared with the
average R2 value of 0.86 and 0.83 on the training and testing set, re-
spectively. The analysis for the other GP_5 models can be as easily con-
ducted following the same procedure for the RGP_5.

Fig. 9 shows the ET structure of the RGP_5 model. As shown, only
arithmetic functions (+, −, * and /), input variables and constant were
involved in the ET, resulting in good interpretability of the solution. The
mathematical phrase of the ET structure in Fig. 9 is given as follows:

(7)

where c0-c8 were 1.0641, 0.5328, 1.0716, 1.1540, 0.7770, 1.1540,
1.0788, 0.1579 and 0.0024 respectively.

Fig. 14. Generalisation capability to a completely new tailings: (a) GP_5 and (b) GBM.
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Fig. 10 compares UCS values from experiments and the RGP_5
model. As we can see, the RGP_5 successfully learned the non-linear
relationships between the UCS and its influencing variables. The pre-
dictive performance evaluated using R2, RMSE, k, and IA was also
shown in Fig. 10. In the case of the training set, the statistical para-
meters obtained by the RGP_5 were: R2 =0.86, RMSE=0.04, k=1.00,
and IA=0.96. Based on the statistical recommendation, a good pre-
diction can be evaluated with R2 >0.64, 0.85<k<1.15, or IA>0.80
(Golbraikh and Tropsha, 2002; Roy and Roy, 2008; Willmott, 1981).
Therefore, the predictive performance of the RGP_5 was quite satisfac-
tory on the training set. Similarly, the statistical parameters on the test-
ing set were: R2 =0.83, RMSE=0.07, k=1.15, and IA=0.93, indicat-
ing a good performance on the testing set. The performance of the RG-
P_5 on the training set was superior to that on the testing set, which was
straightforward as the RGP_5 was built using the training set.

The performance of the RGP_5 model can be further demonstrated
by the histogram plot of the deviation between the predicted and exper-
imental UCS values (Fig. 10). As we can see, the peak frequency for both
the training set and the testing set was around zero. This result indicates
that the experimental and predicted UCS values were almost equal for
most samples in the dataset. Another interesting finding is that the his-
togram was right-skewed for both the training and testing sets, implying
the RGP_5 model tended to predict slightly bigger UCS values, especially
on several samples, than experimental values.

3.4. Relative importance of input variables

As indicated in (Qi et al., 2018d), exploring the relative importance
of input variables could provide a better understanding of the UCS de-
velopment of CPB, which might further suggest promising experimental
studies. In this paper, the relative importance was investigated using the
relative variable frequency and partial dependence plots from the RGP_5
model. The relative variable frequency calculates/compares the appear-
ance frequency associated with each variable during the GP evolution,
which can provide us with the information about the relative impor-
tance of each variable (the more important a variable the more frequent
it may appear in the GP evolving generations). Partial dependence plots
are another way to investigate the dependence nature of the prediction
on the input variables (Friedman, 2001). To obtain partial dependence
plots, a number of values of the input variables are chosen in the first
place. Then, the output is predicted using each of those values for all
cases of other input variables. Finally, the average output is calculated,
which is then plotted against its corresponding input value.

Fig. 11 illustrates the relative frequency of input variables during
the evolution of the RGP_5 model. In the following discussion, input
variables not included in Eq. (7) were referred as non-significant in-
put variables (NSIV) while input variables included in Eq. (7), namely
x4, x6, and x11 - x13, were referred as significant input variables (SIV).
As we can see, there was a quick adjustment for all input variables
in the first 30 generations, implying the GP modelling could identify
the UCS dependence on its influencing variables rapidly. For example,
the relative frequency of NSIV has been decreased to zero or near zero
at generation 30. Above results also demonstrate the efficiency of GP
modelling in investigating the relative importance of input variables.
The relative frequency was continuously adjusted, even though with
small amplitudes, between generation 100 to generation 850. During
this period, the relative frequency of input variables could be ranked
in the following order: x11 >x13 >x12∼x6 >x4 >NSIV. Above genera-
tion 850, a relatively large adjustment was observed for x4, x11, and x12
until generation 1000 and the frequency ranking has been adjusted to:
x12∼x13 >x4∼x6∼x11 >NSIV.

As discussed before, partial dependence plots are calculated by mea-
suring the output variation with the change of input values for

each variable. That means the change of NSIV values would not mod-
ify the predicted output as NSIV were not included in Eq. (7). There-
fore, partial dependence was only plotted for SIV, as shown in Fig. 12.
It is found that the UCS positively correlated with SIV. Furthermore, a
perfect-positive linear relationship was observed between the UCS and
x4, x6, x11, and x13. The UCS growth seems to be accelerated with the
increasing of x12. This phenomenon was also discovered by Qi et al.
(2018d) using GBM modelling and they concluded that the growth of
CPB strength was accelerated after the SC reached 70%. It should be
noted here this accelerating phenomenon has not been confirmed by ex-
periments, which would be a promising topic in the future. Based on
partial dependence plots, the relative importance could be ranked as fol-
lows: x11 >x13 >x12∼x6 >x4 >NSIV, which agrees well with the rela-
tive frequency results.

The importance score was calculated based on the relative variable
frequency from 10 GP_5 models. As the optimum GP_5 model was not
obtained, at least in most cases, at the maximum generation, we took
into account the relative frequency from all generations. Moreover, we
employed GBM method using the same procedure as provided in (Qi et
al., 2018d) so that the results from this study can be compared to the
conclusions in the literature. In GBM modelling, the training set size was
60% selected by the IRS method and particle swarm optimisation (PSO)
with an R2 fitness function was utilised for hyper-parameters tunning.
Table 3 details the relative importance score from GP_5 and GBM mod-
elling. All relative importance scores have been scaled so that the sum
of all 13 importance scores were one.

The GP_5 and GBM both ranked x11, x12, and x13 as the top-three
influencing variables based on their importance scores (x11 =0.33,
x12 =0.23 and x13 =0.20 from GP_5 modelling while x11 =0.34,
x12 =0.26 and x13 =0.24 from GBM modelling). The particular impor-
tance of x11, x12, and x13 found in this paper agrees well with experimen-
tal conclusions in the literature (Fall et al., 2008; Yılmaz et al., 2014; Yin
et al., 2012). An interesting finding is that the GP_5 modelling ranked
x6, x9, x5, and x4 as the 4th–7th influencing variables with an impor-
tance score of 0.087, 0.054, 0.036 and 0.030, respectively, which were
much higher than the other influencing variables in x1 - x10. However,
the importance score of x1 - x10 showed subtle difference from GBM
modelling. A possible reason for this result would be the restricted com-
plexity of GP modelling imposed by the maximum tree depth. In such
case, the constructed GP_5 model cannot take into account all influenc-
ing variables, resulting in a bias to several influencing variables during
evolution. Another interesting finding is the SD value from GBM was
generally smaller than the SD value from GP_5, indicating the impor-
tance score from GBM was more stable that from GP_5. This could also
due to the restricted complexity of GP_5 modelling. Therefore, the inves-
tigation of relative importance score using GP with a small maximum
tree depth should be conducted several times to get a representative re-
sult.

4. Discussion

In this section, we address two important questions that involved
with GP modelling or ML algorithms in the UCS prediction. The first
one is whether the performance of GP modelling is comparable to
well-recognised ML techniques? The second, and probably the most im-
portant, one is that can the trained model be generalised/used to en-
tirely new tailings? In this paper, an entirely new tailings is the one
without any data samples from this tailings being used during model
training.

To address the first question, we compared the predictive perfor-
mance of the GP modelling with three ML techniques (DT, GBM, and
RF) employed in the literature. We followed the same procedure in (Qi
et al., 2018a) and used the same parameter setting for ML techniques
as the GP modelling, such as the same training set size. The optimised
hyper-parameters for three ML techniques are detailed in Table S3 and
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Fig. 13 shows the comparison of average R2 values on the testing set be-
tween GP and ML techniques.

The average R2 values of GP_5, GP_10, GP_15, GBM, RF, and DT
were 0.83, 0.94, 0.92, 0.94, 0.92, and 0.86, respectively. This result
indicates that the predictive performance of GP_5 was relatively poor
compared with that of GBM and RF, but was close to that of DT. In
contrast, the GP_10 and DP_15 were as robust as the GBM and RF.
In the case of the SD, it is found that the GP_10 was the most sta-
ble model on the testing set with the smallest SD value of 0.013.
Considering the average R2 values and the SD on the testing set, the
investigated techniques can be ranked in the following order:
GP_10>GBM>RF>GP_15>DT>GP_5. Overall, the GP modelling
has been verified to be comparable, or even better, than well-recognised
ML techniques.

The second question is about the generalisation capability of trained
GP or ML models to entirely new tailings. Though there has been a se-
ries of papers about the UCS prediction using ML techniques (Qi et al.,
2018a; Qi et al., 2018b; Qi et al., 2018d), no attempts have been made
to address this question. Certainly, this question is the key concern re-
garding each prediction model and its potential utility will suffer a lot
if this question is not properly addressed. The authors believe this ques-
tion is not only for CPB prediction but for any other predictions that in-
volve different types of materials. For example, if a prediction model is
aimed to be built for mechanical properties of concrete using different
binder type, the generalisation of the trained model to the concrete with
an entirely new binder needs to be clearly verified. Therefore, an essen-
tial question for such kind of prediction will be: Can the trained model
be generalised to situations from where no samples have been used dur-
ing the model training.

In this following, we turn our attention to the generalisation capabil-
ity of the trained GP model to an entirely new tailings. To achieve this
objective, we performed another 11 modelling scenarios using the GP_5.
In each scenario, one type of tailings from T1–T11 was selected and all
its data samples were included in the testing set. The data samples in
the training set came from all other types of tailings (except the selected
one). In other words, we trained the GP model using ten types of tailings
and tested its generalisation capability using the remaining one type of
tailings in each scenario. The generalisation capability of GBM to an en-
tirely new tailings was also investigated for comparison purposes.

Fig. 14 shows the average R2 values and the SD from each scenario.
The authors note here T1-T11 in Fig. 14 represents which type of tail-
ings was used in the testing set. For example, T1 means all data sam-
ples from T1 were used in the testing set and data samples from T2-T11
were used in the training set. It can be seen that the trained GP_5 mod-
els could be well generalised to most tailings (except T2) with an av-
erage R2 value larger than 0.8. For some tailings, such as T1 and T4,
the average R2 value reached up to 0.96, which were very satisfactory
predictions in term of R2 values. Similar results were obtained for GBM
modelling, which also shows a good generalisation capability to entirely
new tailings. It needs to note that the generalisation capability of GBM
modelling to T2 was far from satisfactory with an average R2 value of
0.59, implying the GP_5 modelling might be more stable during the gen-
eralisation to entirely new tailings.

As a whole, above discussion shows that the performance of GP mod-
elling was similar or even better compared with well-recognised ML
techniques on CPB UCS prediction. The trained GP model could be gen-
eralised/used to entirely new tailings with satisfactory performance.

5. Limitations and outlooks

Though it has been shown that the UCS prediction using GP or ML
techniques is quite promising, challenges still remain. First, the dataset

was collected from mine sites in China, resulting in a high possibility
that the trained model cannot be generalised to CPB materials from
other countries. This challenge is mainly due to the difference in ce-
ment classification and CPB preparation procedures. Another important
challenge is about improving the accuracy and reliability of predictions,
which involves delicate feature engineering, careful model selection and
efficient algorithms proposing.

For the past 30years, the UCS development of CPB has been investi-
gated by experts from both industry and academia. The utilised method-
ology is still mainly experimental study and a large number of trial tests
are needed for each CPB application. Instead, we anticipate that artifi-
cial intelligence techniques that can autonomously learn from the rich
history of experiments will be crucial for efficient and intelligent CPB
design in the near future. To realize this objective, a multinational, con-
tinuously-updated and highly-accessible database would be the ‘Arm-
strong step’. The next concern would be how to incorporate such pre-
diction in the whole backfill system and whether ML techniques can be
applied to other aspects during CPB design. The final step would be the
establishment of an ‘Intelligent Mining for Backfill (IMB)’ system by in-
tegrating all standalone applications together.

6. Conclusions

In this study, a genetic programming-based method was proposed for
the UCS prediction of CPB. An enlarged dataset was collected using the
results of 1545 UCS tests performed on 11 types of tailings. Two sam-
pling methods, namely the IRS and the KS, were compared for dataset
partitioning. A sensitivity study was performed to investigate the influ-
ence of training set size and maximum tree depth on the performance of
GP modelling. We conducted a detailed analysis of the predictive perfor-
mance of the RGP_5 and investigated the relative variable importance
using multiple methods. Moreover, we compared the predictive perfor-
mance of GP modelling with well-recognised ML techniques and dis-
cussed the generalisation capability of such prediction to entirely new
tailings. Based on the results of this study, the following conclusions can
be drawn:

1. The IRS was found to be more suitable for UCS prediction as it pro-
duced a higher average R2 value on the testing set (0.91).

2. The best performance of the GP modelling was obtained using a
training set size of 60% and a maximum tree depth of 10.

3. The statistical parameters obtained by the RGP_5 were R2 =0.86,
RMSE=0.04, k=1.00, and IA=0.96 on the training set and
R2 =0.83, RMSE=0.07, k=1.15, and IA=0.93 on the testing set,
indicating a satisfactory performance with the RGP_5 model.

4. The GP_5 modelling ranked CTR, SC and T as the top-three influ-
encing variables with their corresponding importance scores of 0.33,
0.23 and 0.20 respectively.

5. The predictive performance of GP modelling was comparable to
well-recognised ML techniques and the trained GP model could be
generalised/used to entirely new tailings with satisfactory perfor-
mance.
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